Goldstone Wind Speeds for the SENSMOD Program

R. Levy
DSN Engineering Section

G. Lorden
California Institute of Technology

Sample months of hourly wind speeds, constructed from two years of observed
data in combination with adjustments to reflect a longer data base, are generated
for the Goldstone Mars antenna site. The adjustments are determined using a
14-year data base that is available for another site and determining the correlation
at the two sites for contemporary periods of observation.

l. Introduction

This paper describes the data analysis and estimation
procedures used to establish sample annual records of
Goldstone hourly average wind speeds (24 X 365 records
per year) from a data base assembled from Goldstone
Deep Space Communications Complex and Edwards Air
Force Base records. These wind speed records are estab-
lished to provide input for the SENSMOD' energy
analysis program (Ref. 1), which is being developed as
part of the Goldstone Energy System Project.

The objective is to determine 12 probability distribu-
tions of wind speeds, one for each calendar month. The
developed distribution for any particular month is to be a
representation of the historical speed distribution for that
month at the Goldstone site. Samples (including stratified
random samples with reduced variance) can then be
generated from these 12 distributions to yield indepen-
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dent measurements on an hourly basis and combined to
yield “sample years” of wind speed data. No requirement
was imposed to model the correlations of successive
hourly measurements, which would have imposed a sub-
stantial additional program. Consequently, with the pres-
ent simplification, the distributions of wind speeds are
not representative of time intervals shorter than one-
month duration.

The form of the distribution function of wind speeds
for a given month was assumed to be

Prob(Speed < s) = F(s) = 1 — exp [ —(as + bs?)]
fors >0 (1)

where a and b are positive parameters characteristic of
the month. Thus, for the ith month (i = 1, ++ -, 12), two
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parameters, a; and b;, are to be determined. This form
of distribution has been found to provide good fits for
the available data sets.

The data base consisted of the following three groups
of wind speed records:

Anemomn- Period of
Set Location eter record, No. .Of
height, ft yr/mo to entries
’ yr/mo
A Goldstone, 150 66/11-68/10 9100
Mars site
B Edwards AFB 13 66/11-68/10 17,500
C Edwards AFB 13

57/1 -70/12 122,700

The Goldstone data consisted of average wind speeds for
5-min periods. The sampling rate was hourly except for
December 1966 through August 1967, when the rate was
1 every 3 hours. Considering the number of observations
that could have been made at these two sampling rates
during the entire period, it has been found that about
259% of the data is missing. Sets B and C (Edwards data)
were extracted from United States Weather Bureau
archive tapes (by Meteorology Research Corporation at
our request) and are complete sets of hourly records with
no entries missing. Set B is actually a subset of C and was
assembled for comparison with contemporary Goldstone
data.

Since the actual data for Goldstone, set A, covers a
period of less than two years, it is not necessarily a reli-
able basis for the desired probability models. As a means
of assuring that the models represent long-term Goldstone
phenomena, the following steps were taken, incorporating
data sets B and C into the analysis:

(1) Using a chi-square criterion for goodness of fit,

12 sets (a;, b;) of monthly parameters were chosen
based on the A data.

(2) Using data sets A and B, the degree of correlation
between monthly wind power (= speed?) at Gold-
stone and Edwards was estimated.

(3) Based on the results of step 2, the long-term data
set C from Edwards was used together with A and
B to obtain “corrections” of the parameter values
found in step 1, the corrected values being designed

to incorporate the long-term information provided
by set C.
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Il. Computation Methods

A. Procedure 1 — Generation of Sample from the Dis-
tribution of Eq. (1)

A simulated monthly sample of wind speeds s, sample
size N (1 per hour), can be constructed from a given dis-
tribution by drawing

u; = uniform (0,1)
i=12++< N (28 X 24 < N < 31 X 24)
and letting
s; = F' (u;)

where F! is the inverse distribution function. Using the
inverse function of Eq. (1) will provide

(a®> — 4bc)V? — a
2b

where

¢ = In(u;)

If desired, variance of the samples so constructed can
be reduced by dividing the range (0,1) into p strata and
drawing N/p uniform numbers for each stratum, then
finding the inverse functions of these numbers as before.
The variance of the sample can be made to approach zero
by letting p approach N. When p equals N, the sample is
no longer a random simulation, but instead tends to
replicate the generating distribution. Note that when
stratified, the samples will occur as p ordered clusters of
N/p numbers, This ordering can readily be removed later
by random scrambling of the sample.

B. Procedure 2 — lLong-Term Distribution Function
Parameters (Steps 1-3, Section I)

1. Step 1. Prior to the present requirement, field data
from Goldstone and other weather stations had been
processed by a moderate-size computer program
WINDMAPW. This consisted of about 1000 source card
images plus references to several JPL 1108 FORTRAN
V library and IMSL library subroutines for analysis and
plotting. After reading the field data from tapes or files,
one of the operations of the program was to fit Pearson
and Weibull distributions to the data. For the current
requirement, the Weibull fit was dropped and fitting
methods for the function of Eq. (1), as will be described,
were substituted. With these changes, this version of the
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program was renamed WINDMAPW. The program cur-
rently resides in a catalogued file (52219RIL) on the
1108A computer.

Fitting parameters to empirical data was performed in
two substeps. A preliminary regression analysis step was
executed to provide class boundaries and starting points
for a final chi-square calculation step.

a. Preliminary regression estimate for parameters a and
b of a sample. By taking the logarithm of both sides of
Eq. (1) and rearranging, we have

In[1l—F(s)]

s

(a + bs) = —

Then let Y; = a + bs; be the model equation for regres-
sion analysis of Y on s, and let

—1n[1l — F (s)]
8

be the observed values of Y;, where F(s;) is the empirical
distribution function of S.

The regression is performed in a subroutine FITEXP.
The input to this subroutine is

(1) Sample = §(I),I = 1L,NT
where NT = total number of terms in sample and
S has been sorted in ascending order.

(2) XMIN, XMAX, = lower and upper threshold
speeds that bound the speed region of interest. The
values used were 8 and 40 km/h (5 and 25 mi/h)
based on typical low-speed threshold and high-
speed generator capacity level, respectively.

This subroutine performs the following operations:

(1) Find IBOT, ITOP, indices of S such that
S(IBOT) > XMIN
S(ITOP) < XMAX

(2) Perform regression on S(I) (IBOT < I < ITOP),
using the following algorithm:

(a) FX = I/(NT + 1) = empirical distribution

(b) X =S5(I)
() Y= —1n(l—-FX)/X
(d) SY=3Y
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SX =:X
SXY = s XY
SXX =3 X?

Then:
NET = ITOP —IBOT + 1

DET = NET*SXX — SX*SX

The resulting initial estimates for a and b are:
a = (SXX*SY — SX*SXY)/DET
b = (NET*SXY — SX*SY)/DET
b. Final chi-square calculation estimate for parameters
a, b of a sample. Divide the speed range between XMIN
and XM AX into 8 interior classes and add one class at the

low end to include all speeds below XMIN and one class
at the high end to include all speeds above XMAX.

Let 0; = observed number of speeds in class “i” (from
the empirical sample)
E; = expected number in class “i”
Let B;
E, = NT * [F(B; + 1) — F(B))]

i

lower speed class boundary for class “”; then

where F(.) is found by evaluating Eq. (1) using the current
estimates of @ and b.

Let FUNCT(a,b) =73 (0@ - Ei)z/Ei
i=1,2-+++10 @)

The estimate of a and b is made by choosing a, b to
minimize the function in Eq. (2).

The operations are performed by subroutines FITEXFE
and CHIPAM.

FITEXP

(1) After regression has been performed to obtain the
preliminary estimate of a, b, classes are set up for
the calculation of FUNCT (Eq. 2) as follows:

Let NCHI = number of interior classes between
XMAX and XMIN (typically 8). Using Eq. (1) com-
pute the difference in distribution function be-
tween XMAX and XMIN. This difference is di-
vided into NCHI parts, each part representing an
equal probability of occurrence. Beginning with
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F(XMIN) and adding these part differences suc-
cessively is equivalent to evaluating the current
distribution function at the interior class bound-
aries. Consequently, evaluation of the inverse dis-
tribution function (see Eq. 1) furnishes the class
boundaries. At this point, these classes have been
established so that E; = E; for all the i, { interior
classes. However, as the estimates of ¢ and b change
from minimization of Eq. (2), the equality is not
maintained because class boundaries are not re-
computed. '

(2) The number of terms in each of these classes is
computed (0;)

(3) Calls subroutine CHIPAM.

CHIPAM

CHIPAM calls a JPL library subroutine to perform a
conjugate direction search to find @ and b that minimize
Eq. (2). The search is performed by means of many (50 to
100) evaluations of the function in Eq. (2). At each evalu-
ation, the E; are computed using the current values of
a and b. The search terminates based upon tolerance tests
of 1 X 103 fora, 1 X 10-* for b, and 1 X 10-* on the func-
tion. This last tolerance is equivalent to a very small frac-
tion of the actual function (one part in 10,000 to 70,000).

As a comment on the method of obtaining the final
chi-square estimate of the parameters, we find no great
changes from the preliminary parameters or function
values obtained by regression.

2. Step 2. The correlation between data sets A and B
was analyzed in terms of wind power P;, defined as a
summation of min[S,25]* (=min[$%25%]), where S =
wind speed in miles per hour. The computational equa-
tion is included in Table 1, and the computed values of
P, for each monthly record in sets A and B are given in
columns 1 and 4 of Table 1 (Goldstone) and column
5 of Table 2 (Edwards). It is assumed that the true
correlation p between total power at Goldstone and
Edwards in contemporary months is chronologically in-
variant. It is also assumed that the pair (Goldstone
monthly power, Edwards monthly power) has a specific
distribution for each calendar month, so that for any
specified month the result for any given year is an inde-
pendent sample from this distribution. It follows from
these assumptions that p is also the (true) correlation of
the pairs of differences, which are defined as follows:

(Gxi — G, Eii — Ezi)yi =1, .-

., 12
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where G,; and G,; represent Goldstone power in the ith
month of year 1 and year 2, respectively, and E,; and E.;
are defined correspondingly for Edwards. Because of
missing September and October data at Goldstone,
Tables 1 and 2 provide only 10 values of i where data
from two years are available. These were used to estimate
p by computation of the sample correlation coefficient of
these 10 pairs, yielding the estimate:

» = 0.486

This correlation coefficient appears to be sufficiently
large to confirm that the approach outlined is reasonable;
e.g., there is a statistical connection between the random
deviations from monthly norms at the two locations,
Goldstone and Edwards.

For the analysis that will be described in step 3 below,
it is necessary also to estimate the ratio of the standard
deviations of G; and E;, which are the monthly powers
for the ith month. This ratio is assumed to be independent
of i and was estimated by the ratio of the two sample
standard deviations that are determined for the 10 values
of G,; — G,; and for the 10 values of E,; — E.;. The
result was the estimate

A
R = o5/05 = 953/664 = 1.44

3. Step 3. To determine “corrected” (a;, b;) pairs, it is
necessary first to utilize the correlation information in a
rational way. The approach adopted was the following:

(1) Estimate the long-term average of the Goldstone
total power for the ith month, for i = 1, =+, 12

(2) Use the results of (1) to correct the values of a; and
b; obtained by the chi-square fit in step 1.
To obtain the long-term Goldstone power for i =

1, o0, 121t

g; = true mean total power for the ith month (Gold-
stone)

A; = average of G,; and G,; (dataset A, Table 1, Col. 4)
B; = average of E,; and E,; (data set B, Table 2, Col. 6)
C, = average of E,;, ***, E,,; (data set C, 14 years,

Table 2, Col. 7)

(For September and October, A; and B; were based on
only one months’ record, not two.)

The estimate used for g; was

A A
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The values of A;, B;, C; and g; are shown in columns
4, 2, 3, and 5, respectively, in Table 3. By the results of
step 2,

A A
p R =0486 X 1.44 = 0.7

Equation (3) defines the appropriate “least weighted
squares” estimator of g; in terms of the available data,
A;, B;, and C;, as shown in the Appendix. This interpreta-
tion depends on the correlation p and the standard devia-
tion ratio R being known. Using estimates instead, as we
have done, is natural and reasonable. More exact analysis
is not feasible without knowledge of the form of the joint
density functions describing wind at Goldstone and
Edwards.

Note that the effect of Eq. (3) is to correct the direct
estimate A; of Goldstone wind power by adjusting for the
difference between Edwards short-term power in the
contemporary period and long-term power. For example,
January data at Edwards (Table 2) shows B; slightly less
than C; (i.e., 1045 < 1101), indicating that the short-term
wind was slightly below the long-term average and sug-
gesting a positive correction (increase) in the estimate of
Goldstone wind power for January. Columns 4 and 5 of
Table 3 show the estimated power before (2856) and after
(2895) the correction was applied.

Having the estimates g; of Goldstone wind power for
the long term, it is necessary now to use these to correct
the a; and b; previously obtained. To clarify the method,
it is helpful to rewrite Eq. (1) in the form

o= e §-a[ 2+(2) ]

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-29

where ¢ = a/b and d = a?/b. Written this way, the
family of distribution functions is seen to have a “scale
factor” parameter ¢ and a “shape” parameter d. For
example, doubling all the wind speeds has the effect of
doubling c, leaving d unchanged. On the other hand, if
c is held fixed while d is changed, the “shape” changes.
The shape effect is that, for very large d, the distribution
is close to an exponential distribution, whereas for smaller
d, it has thinner tails that are more like those of a normal
distribution.

The choice of a distribution to represent the ith month
at Goldstone was made as follows: Let d; = a,2/b; (esti-
mated in step 1) and determine ¢; so that the average
total power agrees with the value g; estimated in (1).
Thus, a model is chosen which predicts total power in
accord with the estimate previously derived and, among
all sets of parameters satisfying this restriction, the choice
is made to yield the same “shape” as was estimated di-
rectly in step 1.

Letting a;* and b,;* denote the parameters of the final
distribution chosen for the ith month,

a;* =a/c

b* = bi/CiQ,

which are shown in columns 7 and 8 of Table 3. The
values of the ¢;’s are shown in column 6. Note that most
of the ¢;’s are close to 1, indicating that the corrections
made are small and that the short-term Goldstone data
are, on the evidence of sets A, B, and C, likely to be repre-
sentative of the long-term wind parameters at Goldstone.

Figure 1 shows a diagrammatic summary of the logic
underlying the generation of the wind speed samples.
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Table 1. Fitting parameters and power terms

From observations on From data pools within A
Month Year individual months corresponding months V;;age
a b P, Year a b P, 7

Jan 67 0.019700 0.000268 3695 67,68 0.08927 0.000765 2570 2856
68 0.085847 0.001345 2017

Feb 67 0.028782 0.002222 3028 67, 68 0.100611 0.002506 1476 2111
68 0.109335 0.002781 1194

Mar 67 0.013132 0.002406 5230 67, 68 0.048574 0.001700 3872 4258
68 0.047229 0.00133 3285

Apr 67 0.007951 0.003035 5347 67, 68 0.025546 0.002326 4530 4801
68 0.030524 0.002258 4255

May 67 0.021088 0.002853 3966 67, 68 0.034341 0.002600 3722 3782
68 0.044651 0.003081 3598

Jun 67 0.026241 0.003175 2986 67, 68 0.023422 0.003705 3248 3158
68 0.022351 0.004697 3329

Jul 67 0.000001 0.006994 2097 67, 68 0.003654 0.006917 1907 1928
68 0.004859 0.006800 1758

Aug 67 0.058394 0.005100 1475 67, 68 0.043111 0.004707 1981 1875
68 0.030681 0.005051 2275

Sep 68 0.070572 0.003518 1681 1681

Oct 68 0.144353 0.000544 1088 1088

Nov 66 0.076671 0.000677 2265 66, 67 0.102385 0.001346 1933 1803
67 0.132794 0.000640 1341

Dec 66 0.106911 0.000412 3090 66, 67 0.074673 0.000618 3489 3365
67 0.068373 0.000811 3631

* & L &

(1) (2) (3) (4)
?Indicates that data in the column above was used in either correlation coefficient computation or in long-term Goldstone projection.
P, = [ min(S3,25%)p(s)ds =~ 3, min(C?, 253) p(Ci) AC

where
C, = class mark

AC = class interval (1 mph)
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Table 2. Edwards AFB data

Power terms

Month  Year P, Average Pooled
Year P Year P
f f

Jan 67 1021 67, 68 1045 57-70 1101
68 1070

Feb 67 728 67, 68 1018 1477
68 1308

Mar 67 2679 67, 68 2325 2453
68 1971

Apr 67 2831 67, 68 2792 2814
68 2754

May 67 2580 67,68 8124 3377
68 3665

Jun 67 2660 67, 68 3064 3179
68 3467

Jul 67 1547 67, 68 2058 2061
68 2568

Aug 67 958 67, 68 1584 1724
68 2211

Sep 68 1532 1464

Oct 68 1225 1211

Nov 66 894 66, 67 750 1088
67 605

Dec 66 1624 66, 67 1428 960
67 1232

*

(5)

(6)

(7)

*See Table 1 note.
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Table 3. Goldstone long-term projected parameters

P ; = power term Speed Long-term
Edwards Goldstone factor parameters
@ ® ® ® ® ® O]
66-68 57-70 66-68 Projected c a b
Jan 1045 1101 2856 2895 1.0575 0.08442 0.00068
Feb 1018 1477 2111 2432 1.2581 0.07997 0.00158
Mar 2325 2453 4258 4348 1.0776 0.04506 0.00146
Apr 2792 2814 4801 4817 1.0220 0.02500 0.00223
May 3124 3377 3782 3959 1.0303 0.03333 0.00245
Jun 3064 3179 3158 3239 0.9911 0.02363 0.00377
Jul 2058 2061 1928 1930 0.9650 0.00379 0.00743
Aug 1584 1724 1875 1973 1.00045 0.04339 0.00470
Sep 1538% 1464 1681 1633 0.9711 0.01267 0.00373
Oct 1225* 1211 1088 1078 0.9448 0.15278 0.00061
Nov ‘ 750 1088 1803 2404 1.1364 0.09010 0.00104
Dec 1428 960 3365 3037 0.9251 0.08072 0.00072
Reference
Table 2 Table 2 Table 1 @+ 07 From computer 1/¢ X (2), (17¢)2 X (3),
(6) (7) (4) [® - ®] search Table 1 Table 1
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GOLDSTONE DATA EDWARDS DATA
1966-68 1966=68

EDWARDS DATA
1957-70

COMPUTE POWER, G..
i

COMPUTE POWER, E..
1, 2 (years) i =1, 2(year)

1, 12 (months) i = 1, 12 (months)
AVERAGE POWER AVERAGE POWER
A, =1/2(Gy +Gy) B, = 1/2(E); +Ey)

un

]

COMPUTE POWER, E.;

j =1, 14 (years)
i ]: 12 {months)

AVERAGE POWER

¢, = Z E; /14

CORRELATION ANALYSIS

GOLDSTONE LONG ~TERM
POWER ESTIMATE

Bei=1,12

PARAMETER ESTIMATES
FIT a'i”, bi*, TO/g\i

GENERATE HOURLY SPEED
SAMPLES FOR EACH MONTH
FROM ASSUMED DISTRIBBUTION,

€eJe
L 1 - exp (=S = bts?)

Fig. 1. Goldstone wind speed model for SENSMOD Program
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Appendix
Estimation Method

Assume that X and Y are random variables with known
correlation coefficient p ratio of standard deviations ¢,/ 0y,
but with unknown means g, and x,. We wish to estimate
uy from data available within two independent samples:
the first sample consisting of n paired sets of (X,Y) data,
denoted as (X,,Y,), **+, (X,,Y,); the second sample con-
sisting of m observations of a set of X data only, denoted
as X1, ***, Xum. The following sample means can be
computed for these data:

(Xy+ <+ X,)

X, =
n
(Y, + +++ +7Y,)
Y, =
n
X, = (Xper + ¢ Xoom)
m
X, + - Xoim
Xoom = ( )

n+m

The approach here will be to select as the estimator of
4y the estimate with smallest variance that can be deter-
mined from the set of unbiased estimators that can be
constructed as linear combinations of the data. In the
special case where (X,Y) are normally distributed, this is
also the estimator that would be derived by the maximum
likelihood method. An alternative derivation would be to
use a least squares approach via a transformation to a
problem of uncorrelated variables.

As a linear combination of the data, let
T=aX + < aX,+ b Xnn
+ o0+ b Xpm + Yy
+ oo+ cYa
be the general form for the estimators to be considered.
It will simplify matters to verify first that the variance-

minimizing T has all a’s equal, all b’s equal, and all ¢’s
equal.
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To see this, consider an unbiased estimator T, not
satisfying this condition. By permuting the a’s if they are
unequal (or the b’s or ¢’s if the a’s are equal), we can
write another estimator T.(s~ T,), which obviously has
the same mean and variance as T,. In particular, T, is
also unbiased and thus (T,+T,)/2 is also unbiased.

Now,

Var(T,+T,) 1 1 1
————2—— TV("Tl + —;—VarT2 + -E_ COU(TI,TZ)

1 1
Ty VarT, + = (T,,T.) (VarT,)/? (VarT.)'/*
P

which is less than VarT,, unless p(T,,T,) = 1. This last
cannot be the case or else there would be a linear rela-
tionship between T, and T\, and then by virtue of the
equality of their means and variances, T, and T, would
have to be equal. Thus, (T,+T.)/2 is better than T, so
that T, cannot be the best linear unbiased estimator.

It suffices, therefore, to consider estimators which can
be written in the form

T = aX,+bX,+cY,
for which the expected value is
ET = (a + b),u.z+ Cuy

The condition of unbiasedness requires that a + b = 0
and ¢ = 1. Hence,

T =Y, +a(X,—X)
and

VarT = Var()_f,.+a}7,.)+Var(a)—(.m)

02 020‘2 _ azaz
=2 + =% 4 2Cou(Y, X,) +—
n n m
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Since
Cov Yl,i P 7.0
Cov(YnX,) = (n )_ ¢t =
) L
VarT = 2 + azoi< ntl ) + 2ap0:0y
n m n
The minimum is attained at ¢ = — p(0y/0,)m/(m+n) and

equals o;/n[l—pzm/(m+n)]. Using the fact that Xom =
(nX,+mX,,)/(m+n), the estimator can be written in the
form

Comparing with the estimator Y,, which has variance
a?/n, it is seen that the variance is reduced by a factor of

(1= p*), when m is much larger than n.

In the application to estimation of monthly wind
powers at Goldstone, since the correlation p and the
standard deviation ratio o,/¢. were unknown, it was
necessary to use estimates of these quantities in the
formula for T.
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